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This paper presents the design of an ultra-low
energy neural network that utilizes time-mode signal
processing (TMSP). Handwritten digit classification
using a single-layer artificial neural network (ANN)
with a Softmin-based activation function is described
as an implementation example. To realize time
mode operation, the presented design makes use of
monostable multivibrator based multiplying analog-
to-time converters, fixed-width pulse generators and
basic digital gates. The time-mode digit classification
ANN was designed in a standard CMOS 0.18µm
IC process and operates from a supply voltage of
0.6V. The system operates on the MNIST database
of handwritten digits with quantized neuron weights
and has a classification accuracy of 88%, which
is typical for single-layer ANNs, while dissipating
65.74 pJ per classification with a speed of 2.37k
classifications per second.

1. Introduction
Machine learning is the study of models and algorithms
that give rise to generalizable understanding of data
and task completion without explicitly programmed
instructions. As one of the many approaches in machine
learning, artificial neural networks (ANNs) are partly
inspired by connectivity and property of biological
neurons and have proven to achieve considerable
performance in a number of application areas.
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Figure 1. Proposed TMSP ANN high-level block diagram.

These areas include machine translation [1,2], computer vision [3,4], pattern recognition [5–7],
game-playing [8,9] and medical diagnosis [10,11]. In the applications that require real-time
operation, e.g., speech [5] and human action [7] recognition, and physical activity and patient
monitoring [12], there is a need for always-on sensing. However, one of the challenges of
the modern machine learning algorithms is their energy dissipation [13]. Most of the machine
learning hardware development is done using either standard cell digital design methods [14,15]
or mixed-signal methods [16] employing analog processing techniques in CMOS technologies.

The advancement and scaling of CMOS technologies have always been based on improving
the performance of digital systems. With each new technology node, the threshold voltages of the
available MOS transistors and the supply voltage of the process node is scaled as well. Scaling
of the supply voltage reduces the headroom that is available to the transistors for operating
in the saturation region. Without transistors operating in the saturation region, it is very hard
to realize signal processing and amplification functions in the analog domain. One solution
to this problem is using time-mode signal processing (TMSP) techniques [17–19]. Time-mode
(TM) circuits represent an analog signal by the time difference between two binary switching
events. Furthermore, when compared to standard digital design practices, time-mode operation
is inherently of lower power. For example, when compared to standard CMOS digital circuit
operation, to transfer N bits of data, the number of switchings required may change from 0 to
N on the data line if the data is transmitted in parallel, whereas in a time-mode circuit transfer
of the data always takes two switchings if the rising and falling edges of a pulse is used for
information transmission. There are other advantages of TM operation, especially for machine
learning hardware implementations: i) time-mode operation allows the designer to reduce the
supply voltage and still realize analog-like functions, as will be shown in this paper, and ii) using
single wires for data transmission instead of using data buses will allow a hardware designer to
realize densely connected ANNs on chip more easily. Based on these observations, it is arguable
that more low-power signal processing and machine-learning systems will be implemented using
time-mode signal processing techniques in the future.

The research work presented here focuses on developing a time-mode digit-classification
single-layer neural network for ultra-low energy operation. The proposed system is shown
in Figure 1. A digit classification ANN was chosen for its simplicity, and well studied and
understood behavior. During the design and training of the ANN, image data from a widely
available dataset, MNIST [20], was used. n by n image data was converted into analog values and
applied to the TM ANN. The applied image data is processed by the TM ANN by accumulating
weighted delay values and a classification signal for the input image is generated. As it will be
presented in the paper, TMSP allows such an ANN to work with extremely low energy dissipation
values and with classification accuracy that is typical for single-layer ANNs.

Contributions of this paper are as follows. A time-mode implementation of a handwritten
digit classification ANN is presented. Optimization steps for both system level and hardware
level design are given, followed by the details of sub-block designs. The designed ANN is
verified by both system level mathematical simulations as well as with transistor level SPICE
simulations. The design is characterized for classification accuracy, energy dissipation and
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Figure 2. A fully-connected, single-layer neural network receiving inputs from an image of handwritten digit 3.

classification speed. The organization of the paper is as follows. Section 2 presents the high-
level details and implementation steps of the ANN in software. Section 3 describes the TMSP
ANN implementation with sub-block design and performance improvement steps. Transistor
level simulation results are presented in Section 4 together with performance metrics, and finally
the conclusions are drawn in Section 5.

2. Artificial Neural Network
In the present study, we implemented a hardware version of a time mode, fully-connected, single-
layer neural network to recognize handwritten digits (Figure 2), using the MNIST database of
handwritten digits [20]. The MNIST database contains a training set of 60,000 images and a test
set of 10,000 images, with all images of size 28× 28 pixels.

As presented in Figure 2, a single layer of neurons applying a linear transformation to the
input data (i.e., MNIST handwritten digits) was constructed. The size of input sample was set to
784 (MNIST handwritten digits of 28× 28 pixels) with an input range [0, 1] and the size of output
sample was set to 10 (10 possible output digits ranging from 0 to 9).

An artificial neuron in the implemented ANN receives pixel data from input units (Figure 3).
Each input x1...xn is multiplied by its respective weightw1...wn, and the artificial neuron receives
and sums all weighted inputs according to:

f(X) =w1x1 + w2x2 + ...+ wixi + ...+ wnxn

=
n∑
i

wixi
(2.1)

Afterwards, an activation function is used to process the weighted sum. In the presented
implementation, Softmin activation function, which takes all the weighted sums as input, is used
(Figure 2). By processing the weighted sums, Softmin function rescales and assigns probabilities
to the classified digit outputs. As a result of the Softmin function, each output is squashed to a
value in the range (0, 1) and the sum of all outputs add up to 1. The Softmin function is defined
as:

Softmin(xi) =
exp(−xi)∑
j exp(−xj)

(2.2)
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Figure 3. An artificial neuron with n× n inputs. Each input is associated with a weight. The weighted sum of all inputs is

transformed by the activation function to produce the output.

After the weighted sums of the inputs are transformed by the activation function, final
classification results are supplied by the ANN, i.e., if the n-th value is the highest in the output
vector of the Softmin function, it means that weighted sum output of the n-th neuron is the
smallest and n-th neuron has the highest probability to successfully classify the input to be digit
n. Unlike most of the implementations that used Softmax as the activation function, in the present
study, Softmin was used. This is based on the assumption that with Softmax, an artificial neuron
with a greater weighted sum (i.e., greater accumulated delay in the hardware implementation)
wins. However, this does not correspond to the targeted hardware implementation in which the
fastest neuron is favored and therefore, using a Softmax activation function would decrease the
operating speed of the ANN. Hence, we have chosen the Softmin activation function with which
the fastest neuron wins and classification speed of the ANN is higher.

The described high-level ANN was implemented, trained and tested on the PyTorch
framework [21]. The training of the ANN was done using batches of 100 images per batch and
for 10 epochs. During the off-line training of the ANN, floating point values were used, however
during hardware implementation and high-level verification simulations, the weight values were
scaled to a range and quantized.

The adaptive moment estimation method (Adam) [22] was used as the optimization method
during the training of the ANN. Adam optimization combines the advantages of both Adaptive
Gradient Algorithm (AdaGrad [23]), which works well with sparse gradients, and Root Mean
Square Propagation (RMSProp [24]), which works well in on-line and non-stationary settings.
Kingma and Ba [22] suggested that instead of generating its parameter updates using a
momentum (like RMSProp with momentum does), updates of Adam may be directly estimated
using an average of first and second moment of the gradient. As a result, Adam performed
equal or better than RMSProp regardless of hyperparameter setting. In L2-regularized multi-class
logistic regression, Adam converged faster than AdaGrad. In a dataset with sparse features, Adam
converged as fast as AdaGrad while dealing with space features efficiently. In an experiment with
convolutional neural networks, Adam converged considerably faster than AdaGrad. For a more
detailed discussion, see [22,25]. During training, the learning rate (α) was set to 0.01 while all
other parameters were configured based on the default settings recommended in [22] (β1 = 0.9,
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Figure 4. Classification accuracy of the designed ANN for varying image length/width sizes and weight quantization bits.

Accuracy contour lines are also drawn for easier reference. Maximum accuracy and chosen implementations are marked.

β2 = 0.999, ε= 10−8) and we aimed to minimize the cross-entropy loss, which is given by:

loss(x, class) =−log(exp(x[class])∑
j exp(x[j])

)

=−x[class] + log(
∑
j

exp(x[j]))
(2.3)

where class is the digit to be classified.
To be able to implement the ANN hardware in an efficient manner, we first investigated

the effects of image size reduction (downsampling) and quantization of neuron weights.
Multiple ANNs with varying image sizes (from 1 pixel/side to 28 pixels/side) and varying
weight quantization bits (1 to 8 bits) were created, trained, and tested. To ease the hardware
implementation and consecutive implementation steps that will be explained in the next sections,
in addition to standard training settings, we constrained the minimum value of neuron weights
to be 0. Therefore, all the weights obtained from the training were either 0 or positive numbers.
The results of our simulations are presented in Figure 4. During our tests, maximum accuracy
achievable from the presented single-layer shallow ANN was 92.95% (for an image size of 26x26
and 8-bits quantization), which is in line with the classification accuracy of single-layer ANNs in
the literature [26].

After the successful software implementation, training and testing of the ANN, multiple steps
were taken to prepare the design for time-mode hardware implementation. First, image size
and number of quantization bits were chosen for the required accuracy. In this implementation,
we opted for a 9 pixels/side input image (81 input pixels) in order to i) reduce the energy
dissipation without significant loss of accuracy, ii) to have an ANN implementation that is directly
comparable to an implementation in the literature [13], and iii) to reduce the transistor level
transient simulation time significantly. With input image scaling, the maximum digit classification
accuracy reduced from 92.95% to 89.65% (for 8-bit quantization).

After the input image size was chosen, the weights were scaled to the range [0, 1], and
were later quantized. From our simulations (Figure 4), 4-bit quantized weights were a good
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Figure 5. Weights of a trained neuron, visual representation and values before and after quantization.

compromise between the expected energy dissipation and accuracy. In the implemented system,
which will be explained in the next section, most of the energy is dissipated in the switched
capacitances. For a fixed total switched capacitance, the number of quantization bits have
negligible effect on the total energy dissipation, and employing a higher number of quantization
bits only result in added implementation complexity. However, if smaller capacitance values
can be tolerated, i.e., less stringent noise and mismatch considerations in the system, then the
smallest number of quantization bits for a given image size, hence the smallest total capacitance
values in the implementation, should be chosen as the energy dissipation scales linearly with
the number of quantization bits. Furthermore, energy dissipation increases quadratically with
the square of image size/side, making the image size a more important parameter for energy
reduction. Therefore, the smallest possible image size that satisfies the accuracy requirements
should be chosen to minimize the energy dissipation. For the presented ANN implementation, we
assumed 9x9 input images, and chose 4-bit quantization weights to represent an average case for
the number of quantization bits. The classification accuracy loss due to quantization was minimal,
i.e., from 89.65% to 89.35%.

Results of quantization on the weights of the neuron (used to classify handwritten digit 9)
are shown in Figure 5. The leftmost figure shows the intensity of the weights, darker pixels
representing smaller values. The middle figure shows the floating point scaled weights and the
rightmost figure shows the weights after quantization. When these two figures are compared,
it is observed that due to quantization, many weights were reduced to zero. These zero weights
have no effect on the weighted sum given in (2.1), therefore can be removed to both simplify the
hardware implementation and reduce energy dissipation. Non-zero weights for all the neurons
are given in Table 1.

Table 1. Number of non-zero weights after quantization for all the neurons in the designed ANN.

Neuron no. Non-zero weights
0 63
1 51
2 47
3 39
4 61
5 50
6 54
7 45
8 64
9 53
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Due to the nature of the designed TMSP circuits which will be explained in the next section,
each circuit that realizes the multiply-accumulate (MAC) operation has an inherent non-zero fixed
delay. Therefore, not to penalize the neurons which have more non-zero weights and for the
correct operation of the designed system, we designed the circuit implementation of the ANN
such that each neuron has an equal number of MAC elements, which is equal to the maximum
number of non-zero weights given in Table 1, i.e., 64 for neuron 8. Such an implementation
allowed us to reduce the number of MAC units for the 9× 9 pixel design from 810 to 640,
effectively reducing the expected average energy dissipation by 21% by high-level design choices.

3. A Time-Mode MNIST Digit Classifier ANN Implementation
Following the mathematical modeling, training, verification and quantization of the ANN, we
applied time-mode operation and TMSP methods to the design of a digit classification ANN in a
standard 0.18µm IC process. Each neuron defined by (2.1) is mapped to a TMSP implementation,
as shown in Figure 6. As in (2.1), a chain of multiplying analog-to-time converters (mATC)
converts a voltage input value into a pulse whose width is proportional to both the input
signal value and the assigned weight. The signal propagates through the chain of mATCs and
fixed-width pulse generators (FWPGs). FWPGs, represented by the pulse blocks in Figure 6, are
required to be able to trigger the next mATC in the chain with the falling edge of the previous
mATC pulse. The structures and operation principles of both the mATC and the negative-edge
triggered fixed-width pulse generator are explained in the following paragraphs. In this specific
implementation, we created a chain of 64 mATCs for each neuron. Due to the resulting zero
weights after quantization, not all the pixels are connected to each neuron, further simplifying
the hardware implementation and future on-chip routing.

The operation of the TM ANN neuron is as follows: Once the neuron has been triggered with
the Begin Classification signal, the chain of mATCs and FWPGs operate sequentially to accumulate
the delay information from each mATC, each of which represents the weighted input pixel
data. As explained in the previous section, the ANN has been trained with a Softmin activation
function, meaning that the neuron with the smallest weighted sum output value, i.e., in TMSP
terms, the fastest response (earliest falling edge at the output of the last (N -th) mATC), will get to
classify the input image first. Therefore, we placed negative-edge triggered flip-flops at the output
of the neurons to capture the final falling edge of the signal generated by the chain of mATCs. This
“faster response wins" approach directly mimics the Softmin function explained in the previous
section and is also similar to how some biological neural networks which are trained repeatedly
behave.

During the design of the TM ANN, we employed a modified version of the basic monostable
multivibrator (MSMV) [27] to work as an mATC in the system, as shown in Figure 7. In this
implementation, a pMOS transistor (M1) acts as a variable resistor whose resistance is modulated
by the current input voltage signal. When the MSMV is triggered by an input pulse, nodes n1 and
n2 are pulled to logic-low and M1 starts charging node n2. The gate of M1 is driven by the input
signal that is to be converted into time, and sampling is realized by modulating the instantaneous
resistance of M1. Thus, the RC time constant of the multivibrator is modulated as well, resulting
in a pulse whose width is proportional to the amplitude of the input signal. The pulse width
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Figure 7. Monostable multivibrator based multiplying ATC with time linearizing capacitor Cx.

generated by the ATC is given in [28] by:

T =C(R+Ron) ln

[
R

R+Ron

VDD

VDD − Vth

]
, (3.1)

where R is the average resistance of the pMOS transistor during pulse generation, Ron the
resistance of the NOR gate, and Vth the switching threshold of the inverter. Assuming Ron <<R

and Vth = VDD/2, (3.1) is simplified to T = 0.69RC. Furthermore, this mATC implementation
has an inherent timeout feature and will always generate a pulse event at node n1 regardless of
the input signal value at Vin, avoiding stalling of the chain. Transistor M1 was made bigger than
the minimum values required for correct operation to mitigate process variation effects. The ATC
given in [28] was modified with the inclusion of extra switchable capacitors C0-C3 to allow the
ATC to realize time-multiplication operation. The capacitors C0-C3 are increasing in a binary
weighted fashion, C0 being the unit least-significant bit (LSB) capacitance, and C3 = 8 · C0 being
the most-significant bit (MSB) capacitance. The unit capacitor was sized such that, for the smallest
multiplication coefficient, i.e., 0001, the mATC still generates a pulse response that is proportional
to the input signal value. The switches were implemented as transmission gates using minimum
size (0.22µm/0.18µm) MOS transistors.

In the first iteration of the design, the minimum unit capacitor that satisfies this requirement
was found to be 20 fF. In this iteration, we used only switchable capacitors as the charged capacitor
to reduce the total switched capacitance, hence the total energy dissipation. However, during our
transistor level simulations, we saw that due to the parasitic capacitances at node n2 and the
non-idealities of the switches, the pulse-width ratio between the successive weights degraded,
especially for the smaller values, i.e., for 0001 and 0010. Therefore, we placed a fixed time
linearizing 10 fF capacitor Cx in parallel to the switched capacitors. Addition of Cx also allowed
us to reduce the value of the unit switched capacitor from 20 fF to 10 fF, as for the smallest weight
setting, the charged capacitance at n2 is still 20 fF.

Transistor level simulations using the HSPICE simulator were run to characterize the mATC.
Simulations were run for a supply voltage of 0.6V VDD, while sweeping the input signal voltage
from 300mV to 400mV, to represent the expected input signal values from an imager. In all the
transistor level simulations, the black and white pixels are represented by 300mV and 400mV
input voltage values to the mATCs, respectively.

The advantages of the placement of Cx in the second iteration of the mATC design are shown
in Figure 8. The range of pulses generated by both versions of the mATC for different weights as
well as their mean are presented in the figure. There are multiple points that should be noted from
transistor level simulation results: i) slope of the time response of the mATC has been reduced,
effectively making the mean pulse-width values more fitting to a binary progression, hence the
name time-linearizing (TL), ii) due to the better fitting of the mean to binary progression, the
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error between the multiplication steps has been reduced (the root mean squared error (RMSE)
is reduced from 6.61% to 1.59%, see Table 2 for more details), and iii) due to the reduced
total capacitance, the system response is faster (average pulse width is reduced from 81.16µs
to 43.72µs) and the average energy dissipation is reduced (from 254 fJ to 157 fJ).

A negative edge triggered FWPG, shown in Figure 9, is used between the mATC blocks as
we require the triggering of the next mATC in the chain to occur during the falling edge of the
pulse generated by the previous mATC. By triggering the next mATC with the falling edge of
the previous mATC output, time addition operation is realized. In this implementation, we used
a FWPG which generates pulses with a pulse-width of 50 ns. This minimum value of the pulse-
width can be chosen to be any value that satisfies the following requirements during triggering:

Table 2. mATC expected multiplication weight ratios and % errors for different designs.

mATC multiplication
weight ratio

Expected
ratio

% error -
base mATC

% error -
TL mATC

w2/w1 2.00 91.09 20.91
w3/w2 1.50 15.03 7.17
w4/w3 1.33 4.27 0.22
w5/w4 1.25 2.87 1.62
w6/w5 1.20 1.96 0.41
w7/w6 1.17 1.50 0.41
w8/w7 1.14 -0.24 -0.87
w9/w8 1.12 1.11 0.26
w10/w9 1.11 1.36 0.45
w11/w10 1.10 1.08 0.27
w12/w11 1.09 0.99 0.45
w13/w12 1.08 1.07 0.37
w14/w13 1.08 1.34 0.74
w15/w14 1.07 1.08 0.48
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Figure 9. Negative-edge triggered fixed-width pulse generator.

i) both nodes n1 and n2 are completely driven to ground during the pulse, and ii) other input of
the NOR gate is completely driven to VDD with sufficient timing margin to account for process
mismatch before the output of the FWPG goes low. The maximum value of the pulse-width of the
FWPG is limited by the minimum pulse value that is generated by the mATC, i.e., 1.94µs for a
0001 input. During our simulations, same pulse-width was also used for the Begin Classification
signal.

4. Simulation Results
After characterization and verification of the sub-blocks of the hardware ANN, extensive
transistor level SPICE simulations using HSPICE simulator were run to verify the correct time-
mode operation of the designed system. As in the characterization of the sub-blocks, a supply
of 0.6V is used. Separate testbenches were programmatically created to simulate 100 samples
from the test dataset and transient simulations were run. Results of one such simulation run for
a classification of digit 2 is shown in Figure 10. As it can be seen, the correct classifier neuron
generates a faster output response than the other neurons, successfully classifying the input digit.
For this specific case, the fastest neuron, i.e., neuron 2, responded 62.1µs faster than the next
fastest neuron.

 0
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Figure 10. Transistor level transient simulation of an example correct classification of a handwritten digit 2 by neuron 2.

The figure shows the output signals of the neurons with timing information.
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number of mATCs inside the neuron.

The average energy dissipation per classification while working at 0.6V VDD is 65.74pJ. The
average classification response time for the test dataset is 421.8µs, resulting in 2.37k classifications
per second for a classification accuracy of 88%. As the focus of the present study is on an
energy efficient design with low dissipation rather than state-of-the-art classification accuracy,
the accuracy of 88%, which is typical in 1-layer neural networks [26], is acceptable at the current
stage. In the meantime, the classification accuracy is still significantly higher than the random
guess for MNIST dataset.

We also investigated the effects of process mismatch on the performance of, first, a chain of
mATCs, and later, on the ANN. We first simulated a chain of mATCs with varying number of
elements for the effects of local mismatch. For these simulations, to represent an average case of
operation, all the analog input voltages to the mATCs and the multiplication coefficients were set
to 350 mV and 1000, respectively. 100-point Monte Carlo simulations were run, and the results
are presented in Figure 11. The figure shows the curve fits of the normalized probability density
functions over a varying number of elements in an mATC chain and the decrease in the coefficient
of variation (CV = σ/µ) with increasing number of elements in the chain. The improvement in
CV is

√
2 for every doubling of the number of mATC elements in the chain.

As it is apparent from the mATC chain mismatch simulations, increasing the number
of elements in the chain reduces the relative variability of the ANN. Even though as the
implemented ANN is trained off-line and there is no provision and straight-forward way to
address variability during training, reliability issues due to process mismatch may be addressed
in two ways: i) Algorithmically testing each neuron for the variability of the elements by applying
multiple analog input and digital control combinations and extracting the linear transfer curve,
and ii) by increasing the number of mATCs in the chain to average out and reduce the effects of
variation, as shown in Figure 11.

To test the performance of the ANN for process mismatch, for each of the 100 image samples
we used to simulate and characterize the system, we ran 100 point Monte-Carlo mismatch
simulations (100x100 transient simulations in total) and the average standard deviation in the
neuron response due to process mismatch time was 9.2µs. Simulation results of such a simulation
run for the classification of handwritten digit of 3 is presented in Figure 12 as an example. The
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Figure 12. 100 point Monte-Carlo simulation (classification of a handwritten digit 3) response time variation of the neurons

of the designed ANN due to process mismatch.

figure shows the response time variation distribution of each neuron in the designed ANN due
to process mismatch.

For a misclassification to occur due to mismatch, the second fastest neuron should respond
faster than the fastest neuron of the nominal conditions. For the case shown in Figure 12, this
is possible between neurons 3 and 7. This probability can be modeled as the half of the area of
overlap of two Gaussian distributions with the same standard deviation and differing means
(Figure 13), and the intersection point of the distributions depends on the distance between
the means. For mean differences less than 1.2σ, we saw that the errors due to the training
(88% accuracy) occurred. For mean differences greater than 1.2σ, we calculated the added
misclassification probability for each neuron and found the total added possibility of error due to
process mismatch to be 1.17%, reducing the expected minimum accuracy to 86.63%.
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 0.04

 0.05

 360  380  400  420  440  460  480  500

P
D

F

Neuron response time (us)

Fastest neuron
2nd fastest neuron

Figure 13. Response variation of 2 competing neurons due to process mismatch. Half of the value of the green shaded

area represents the probability of misclassification.
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Table 3. Comparison of the implemented TM ANN with the implementations in the literature.

SRAM Classifier [13] This work
Technology [nm] 130 180

Supply voltage [V] 1.2 0.6
Classification accuracy [%] 90 88
Classification Speed [Hz] 50 · 106 2370

Analog-to-digital conversion energy included No Yes
Energy dissipation [pJ] 630 66

When compared to the state-of-the-art hardware ANN implementations, the design presented
in this work compares favorably in terms of reduced energy dissipation, which is the main aim
of this design exercise. A comparison of results with a recent and directly comparable hardware
9× 9 pixel MNIST classification ANN in [13] is given in Table 3. When both implementations are
compared, even though the presented ANN is designed using an older technology, i.e., 0.18µm
process, compares favorably in terms of energy dissipation. One metric where the design in [13]
is performing better than the presented implementation is the classification speed. However, due
to the design constraints in [13], operating voltage cannot be lowered further, hence, energy
dissipation, which is proportional to the square of supply voltage in digital circuits, cannot be
further reduced. Furthermore, it is expected that our implementation will achieve much better
average operating speed and energy dissipation numbers when this design is migrated to more
advanced technologies. The energy dissipation per classification is reduced by a factor of 9.58x,
from 630pJ down to 65.74pJ when compared to [13]. It should also be noted that the ANN
implementation presented in this paper works with analog signal inputs, without requiring the
input data to be converted to digital for further processing. If analog-to-digital conversion energy
cost per image is added to the classification energy numbers reported in [13] in Table 3, presented
ANN implementation is even more energy efficient.

Extending the single-layer ANN presented in this study to a multi-layer version is an on-going
work. However, from our preliminary results, it has been observed that, once a value/variable is
converted to a time-mode signal, in order to operate in the most energy efficient way, processing
should continue in time-mode without conversion between the time-mode and analog/digital
domains. For example, an asynchronous time-to-digital converter (TDC) in 0.18µm process
dissipates 1.48 pJ [19], and a similar TDC in a 65 nm process dissipates 0.97 pJ [29] per conversion.
When compared to the average energy dissipation of each neuron (6.6 pJ), it can be observed that
conversion between different operating domains incur energy dissipation overhead values which
are comparable to the energy dissipation of the data processing circuitry.

5. Conclusions
This paper presents the hardware design and the simulation results of a time-mode, single-
layer artificial neural network (ANN) with Softmin activation function for handwritten digit
classification. Time-mode signal processing techniques have been applied for accumulating
weighted image signal values using energy-efficient time-mode circuitry. Optimization steps for
both system level and hardware level design are given. The system was designed and simulated in
a standard 0.18µm process and operates from a supply voltage of 0.6 V. By applying the presented
design guidelines, an energy-optimal 9× 9 handwritten digit image classification ANN with 4-
bit quantized weights was designed. The energy dissipation of the design for each classification
is 65.74pJ while operating at a speed of 2.37k classifications per second, with a classification
accuracy of 88%.

6. Enunciations
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